WEEKLY TEST MEDICAL PLUS -02 TEST - 06 RAJ PUR SOLUTION Date 28-07-2019

[PHYSICS]

3.

Initial velocity is zero. After dropping, velocity increases in negative (downward) direction. Just before collision with the ground velocity is negative and just after collision velocity is positive (upward). Final velocity becomes zero. This all is best represented by option (d).
4.

Initial relative velocity $=v_{1}-v_{2}$,
Final relative velocity $=0$
Now, $v^{2}=u^{2}-2 a s \Rightarrow 0=\left(v_{1}-v_{2}\right)^{2}-2 \times a \times s$
$\Rightarrow \quad s=\frac{\left(v_{1}-v_{2}\right)^{2}}{2 a}$
If the distance between two cars is ' s ' then collision will take place. To avoid collision $d>s$
$\therefore d>\frac{\left(v_{1}-v_{2}\right)^{2}}{2 a}$
where $d=$ actual initial distance between two cars.
5.

For P, in $t \mathrm{sec}$.

$$
\begin{aligned}
& x_{1}=\frac{1}{2} X t^{2}=\frac{X t^{2}}{2} \Rightarrow v_{1}=X t \\
& x_{2}=(X t) t+\frac{1}{2} 2 X t^{2} \Rightarrow x_{2}=2 X t^{2} \\
& x_{p}=x_{1}+x_{2}=\frac{5}{2} X+2
\end{aligned}
$$

For Q,

$$
\begin{aligned}
& y_{1}=\frac{1}{2}(2 X) t^{2}=X t^{2} \Rightarrow v_{2}=2 X t \\
& y_{2}=(2 X t) t+\frac{1}{2} X t^{2}=\frac{5}{2} X t^{2} \\
& y_{Q}=y_{1}+y_{2}=\frac{7}{2} X t^{2} \Rightarrow y_{Q}>x_{P}
\end{aligned}
$$

Distance travelled from time ' $t-1$ ' \sec to ' t ' \sec is

$$
\begin{equation*}
S=u+\frac{a}{2}(2 t-1) \tag{i}
\end{equation*}
$$

from given condition $S=t$
from (i) and (ii), $t=u+\frac{a}{2}(2 t-1)$
$\Rightarrow \quad u=\frac{a}{2}+t(1-a)$.
Since u and a are arbitrary constants, and they must be constant for every time.
So, coefficient of t must be equal to zero.
$\Rightarrow \quad 1-a=0 \Rightarrow a=1$ for $a=1, u=\frac{1}{2}$ unit
Initial speed $=\frac{1}{2}$ unit

Velocity of 1st stone when passing at A

$$
V^{2}=0+2.10 .5 \Rightarrow V=10 \mathrm{~m} / \mathrm{s}
$$

And $S_{1}-S_{2}=20 \mathrm{~m}$.

$\Rightarrow \quad\left(10 \cdot t+\frac{1}{2} 10 \cdot t^{2}\right)-\left(\frac{1}{2} \cdot 10 \cdot t^{2}\right)=20$

At $t=2 \mathrm{~s}, S_{2}=\frac{1}{2} g t^{2}=\frac{1}{2} \times 10 \times 2^{2}=20 \mathrm{~m}$
Hence height of the tower,

$$
H=S_{1}+S_{2}=25+20=45 \mathrm{~m} .
$$

8.

$$
\begin{aligned}
& v_{0} \rightarrow \text { maximum speed } \\
& s=\frac{v_{0}+0}{2} t_{1} \Rightarrow t_{1}=\frac{25}{v_{0}} \\
& t_{2}=\frac{35}{v_{0}} \\
& 5 s=\frac{v_{0}+0}{2} t_{3} \Rightarrow t_{3}=\frac{10 s}{v_{0}} \\
& v_{\mathrm{av}}=\frac{s+3 s+5 s}{t_{1}+t_{2}+t_{3}} \\
& v_{\mathrm{av}}=\frac{9 s}{\frac{2 s}{v_{0}}+\frac{3 s}{v_{0}}+\frac{10 s}{v_{0}}} \Rightarrow \frac{v_{\mathrm{av}}}{v_{0}}=\frac{3}{5}
\end{aligned}
$$

From $S=u t+\frac{1}{2} a t^{2}$

$$
S_{1}=\frac{1}{2} a(P-1)^{2} \text { and } S_{2}=\frac{1}{2} a P^{2} \quad[\text { As } u=0]
$$

From $S_{n}=u+\frac{a}{2}(2 n-1)$

$$
\begin{aligned}
S_{\left(P^{2}-P+1\right)^{\text {th }}} & =\frac{a}{2}\left[2\left(P^{2}-P+1\right)-1\right] \\
& =\frac{a}{2}\left[2 P^{2}-2 P+1\right]
\end{aligned}
$$

It is clear that $S_{\left(P^{2}-P+1\right)^{\text {th }}}=S_{1}+S_{2}$
10.

Between time interval 20 sec to 40 sec , there is nonzero acceleration and retardation.
Hence, distance travelled during this interval
$=$ Area between time interval 20 sec to 40 sec
$=\frac{1}{2} \times 20 \times 3+20 \times 1=30+20=50 \mathrm{~m}$.
11.

$$
\begin{aligned}
& -120=10 t \frac{1}{2}-\times 10 \times t^{2} \\
& t^{2}-2 t-24=0 \\
& t=6 \mathrm{sec}
\end{aligned}
$$

$A \longleftarrow-2 m \longrightarrow B$

Total time taken $=4 \mathrm{~min}$
(i) $\frac{v_{0}}{x}+\frac{v_{0}}{y}=4 \mathrm{~min}$.
(ii) Total distance travelled $=2 \mathrm{~km}$
$\Rightarrow \quad$ Area under v - t graph $=2 \mathrm{~km}$

$$
\frac{1}{2} \times \frac{v_{0}}{x} \times v_{0}+\frac{1}{2} \times \frac{v_{0}}{y} \times v_{0}=2 \mathrm{~km}
$$

From (i) and (ii), $-\frac{1}{x}+\frac{1}{y}=4$
13.

Suppose the man drops at A, from A to B he is falling freely and then at B parachute opens out and he falls with a retardation of $2.5 \mathrm{~m} / \mathrm{s}^{2}$.

$\therefore \quad A B=\frac{1}{2} \times 10 \times 10^{2}=500 \mathrm{~m}$
$\therefore \quad B C=A C-A B=2495-500=1995 \mathrm{~m}$.
Velocity at B,

$$
V_{B}=g t=10 \times 10=100 \mathrm{~m} / \mathrm{s} \downarrow
$$

Velocity at $C, V_{C}=\sqrt{V_{B}^{2}+2 a y}$

$$
\begin{aligned}
& =\sqrt{100^{2}+2 \times 2.5 \times(-1995)} \\
& =\sqrt{25}=5 \mathrm{~m} / \mathrm{s} \downarrow .
\end{aligned}
$$

Let $O A B$ be the velocitytime graph of the lift. The ordinate at A (i.e., $A M$) represents maximum velocity.

Total distance travelled
$=$ area of the $\triangle O A B=\frac{1}{2} \times O B \times A M$
$A M=v, O M=t_{1}, t_{1}+t_{2}=O B=t, M B=t_{2}$
$\therefore \quad \triangle O A B=\frac{1}{2} \times t v=h$
or $\quad v t=2 h$
Now $\frac{v}{t_{1}}=a$ or $t_{1}=\frac{v}{a}$
and $\quad \frac{v}{t_{2}}=2 a$ or $t_{2}=\frac{v}{2 a}$

Adding (ii) and (iii)

$$
\begin{aligned}
& t=t_{1}+t_{2}=\frac{v}{a}+\frac{v}{2 a}=\frac{3 v}{2 a}=\frac{3}{2 a} \times \frac{2 h}{t} \\
& \text { or } \quad a t^{2}=3 h \Rightarrow h=\frac{a t^{2}}{3}
\end{aligned}
$$

15.

$\because v=0+n a \Rightarrow a=\frac{v}{n}$
Now, distance travelled in $n \mathrm{sec}$.

$$
\Rightarrow \quad S_{n}=\frac{1}{2} a n^{2}
$$

and distance travelled in $(n-2)$ sec

$$
\Rightarrow \quad S_{n-2}=\frac{1}{2} a(n-2)^{2}
$$

\therefore Distance travelled in last two seconds,

$$
\begin{aligned}
& =S_{n}-S_{n-2} \\
& =\frac{1}{2} a n^{2}-\frac{1}{2} a(n-2)^{2} \\
& =\frac{a}{2}\left[n^{2}-(n-2)^{2}\right] \\
& =\frac{a}{2}[n+(n-2)][n-(n-2)] \\
& =a(2 n-2) \\
& =\frac{v}{n}(2 n-2) \\
& =\frac{2 v(n-1)}{n}
\end{aligned}
$$

Distance $=$ Area under $v-t$ graph

$$
\begin{aligned}
& =A_{1}+A_{2}+A_{3}+A_{4} \\
& =\frac{1}{2} \times 1 \times 20+(20 \times 1)+\frac{1}{2}(20+10) \times 1+(10 \times 1) \\
& =10+20+15+10=55 \mathrm{~m}
\end{aligned}
$$

17.

Average velocity $=0$ because net displacement of the body is zero.
Average speed $=\frac{\text { Total distance covered }}{\text { Time of flight }}$

$$
=\frac{2 H_{\max }}{2 u / g}
$$

$$
\Rightarrow \quad v_{\mathrm{av}}=\frac{2 u^{2} / 2 g}{2 u / g} \quad \Rightarrow v_{\mathrm{av}}=\frac{u}{2}
$$

Velocity of projection $=v$ (given)

$$
\therefore \quad v_{a v}=\frac{v}{2}
$$

18.

$$
\begin{aligned}
V_{\mathrm{avg}} & =\frac{x_{f}-x_{i}}{t_{f}-t_{i}} \\
& =\frac{\left(1 \times 5^{2}+1\right)-\left(1 \times 3^{2}+1\right)}{5-3}=\frac{16}{2}=8 \mathrm{~ms}^{-1}
\end{aligned}
$$

19.

Let the initial velocity of ball be u.
Time of rise $t_{1}=\frac{u}{g+a}$ and height reached $h=\frac{u^{2}}{2(g+a)}$
Time of fall t_{2} is given by

$$
\begin{aligned}
& \frac{1}{2}(g-a) t_{2}^{2}=\frac{u^{2}}{2(g+a)} \\
\Rightarrow & t_{2}=\frac{u}{\sqrt{(g+a)(g-a)}}=\frac{u}{(g+a)} \sqrt{\frac{g+a}{g-a}} \\
\therefore \quad & t_{2}>t_{1} \text { because } \frac{1}{g+a}<\frac{1}{g-a}
\end{aligned}
$$

AVIRAL CLASSES

creating scholars
20.

Now, $v=0$ gives
$t=0 \quad$ and $\quad t=2 \mathrm{sec}$.
Velocity will become zero at $t=2 \mathrm{sec}$., so particle will change direction after $t=2 \mathrm{sec}$.
At $t=0$

$$
x_{(0 \mathrm{sec})}=-10
$$

At $t=2 \mathrm{sec}$.
$x_{(2 \mathrm{sec})}=2^{3}-3(2)^{2}-10=8-12-10=-14$
At $t=4 \mathrm{sec}$.

$$
\begin{aligned}
x_{(4 \mathrm{sec})} & =4^{3}-3(4)^{2}-10 \\
& =64-48-10=6
\end{aligned}
$$

Distance travelled $=x_{1}+x_{2}$

$$
=|-14-(-10)|+|6-(-14)|=4+20=24
$$

Distance Travelled $=24$ units.
21.

$$
\begin{aligned}
& u=200 \mathrm{~m} s, v=100 \mathrm{~m} / \mathrm{s}, s=0.1 \mathrm{~m} \\
& \begin{aligned}
a & =\frac{u^{2}-v^{2}}{2 s} \\
& =\frac{(200)^{2}-(100)^{2}}{2 \times 0.1}=15 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\end{aligned}
$$

22.

Velocity acquired by body in 10 s

$$
v=0+2 \times 10=20 \mathrm{~m} / \mathrm{s}
$$

and distance travelled by it in 10 s

$$
S_{1}=\frac{1}{2} \times 2 \times(10)^{2}=100 \mathrm{~m}
$$

then it moves with constant velocity ($20 \mathrm{~m} / \mathrm{s}$) for 30 s

$$
S_{2}=20 \times 30=600 \mathrm{~m}
$$

After that due to retardation $\left(4 \mathrm{~m} / \mathrm{s}^{2}\right)$ it stops

$$
S_{3}=\frac{v^{2}}{2 a}=\frac{(20)^{2}}{2 \times 4}=50 \mathrm{~m}
$$

Total distance travelled $S_{1}+S_{2}+S_{3}=750 \mathrm{~m}$

Since, body starts from rest $u=0$

$$
\therefore \quad v^{2}=2 a s
$$

Which is general equation of parabola

$y^{2}=4 a x$, i.e., graph should be parabola symmetric to displacement axis.
As ball is thrown upwards velocity decreases as
24.

When two spheres are dropped they will acquire the same acceleration which is due to gravitational effect. And also the acceleration due to gravity is independent of mass of the body. Hence, the two spheres have the same acceleration

The two cars (say A and B) are moving with same velocity, the relative velocity of one (say B) with respect to the other

$$
A, \vec{v}_{B A}=\vec{v}_{B}-\vec{v}_{A}=v-v=0
$$

So the relative separation between them ($=5 \mathrm{~km}$) always remains the same.
Now if the velocity of car (say C) moving in opposite direction to A and B, is \vec{v}_{C} relative to ground then the velocity of car C relative to A and B will be $\vec{v}_{\text {rel. }}=\vec{v}_{C}-\vec{v}$

But as \vec{v} is opposite to v_{C}, so $v_{\text {rel }}=v_{c}-(-30)$ $=\left(v_{C}+30\right) \mathrm{km} / \mathrm{hr}$
So, the time taken by it to cross the cars A and B

$$
\begin{aligned}
& t=\frac{d}{v_{\mathrm{rel}}} \Rightarrow \frac{4}{60}=\frac{5}{v_{C}+30} \\
\Rightarrow \quad & v_{C}=45 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

26.

If the particle is moving in a straight line under the action of a constant force or under constant acceleration (a)

Using, $s=u t+\frac{1}{2} a t^{2}$.

Since the body starts from the rest $u=0$
$\therefore \quad s=\frac{1}{2} a t^{2}$
Now, $s_{1}=\frac{1}{2} a(10)^{2}$
and $\quad s_{2}=\frac{1}{2} a(20)^{2}$
Dividing Eq. (i) and Eq. (ii), we get

$$
\frac{s_{1}}{s_{2}}=\frac{(10)^{2}}{(20)^{2}} \Rightarrow s_{2}=4 s_{1}
$$

27.

Using $\vec{v}=\vec{u}+\vec{a} t$

$$
\begin{aligned}
\vec{v} & =(3 \hat{i}+4 \hat{j})+(0.4 \hat{i}+0.3 \hat{j}) \times 10 \\
\Rightarrow \quad \vec{v} & =7 \hat{i}+7 \hat{j}
\end{aligned}
$$

hence speed $|v|=7 \sqrt{2}$
28.

We have $v=\sqrt{2 g h}$

$$
=\sqrt{2 \times 10 \times 20}=\sqrt{400}=20 \mathrm{~ms}^{-1}
$$

29.

Average acceleration $=\frac{\text { Change in velocity }}{\text { Total time }}$

$\overrightarrow{v_{L}}=30 \hat{i} \mathrm{~m} / \mathrm{s}$ and $\overrightarrow{v_{i}}=40 \hat{j} \mathrm{~m} / \mathrm{s}$
$\Delta \vec{v}=\overrightarrow{v_{f}}-\overrightarrow{v_{i}}=40 \hat{j}-30 \hat{i} \mathrm{~m} / \mathrm{s}$
$|\Delta \vec{v}|=\sqrt{30^{2}+40^{2}}=\sqrt{900+1600}=50 \mathrm{~m} / \mathrm{s}$
$\vec{a}=\frac{\left|\overrightarrow{V_{f}}-\overrightarrow{V_{i}}\right|}{\Delta t}=\frac{\sqrt{50}}{10}=50 \mathrm{~ms}^{-2}$
30.

Velocity $v=\frac{s}{t} \Rightarrow s=v t$
The average speed of particle $v_{a v}=\frac{s+s}{\frac{s}{v_{1}}+\frac{s}{v_{2}}}$

$$
\Rightarrow \quad v_{a v}=\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}
$$

31.

For a particle released from a certain height the distance covered by the particle in relation with time is given by, $h=\frac{1}{2} g t^{2}$
For first $5 \mathrm{sec}, h_{1}=\frac{1}{2} g(5)^{2}=125$
Further next $5 \mathrm{sec}, h_{1}+h_{2}=\frac{1}{2} g(10)^{2}=500$
$\Rightarrow \quad h_{2}=375$
$h_{1}+h_{2}+h_{3}=\frac{1}{2} g(15)^{2}=1125$
$\Rightarrow \quad h_{3}=625$
$h_{1}=3 h_{1}, h_{3}=5 h_{1}$
or $\quad h_{1}=\frac{h_{2}}{3}=\frac{h_{3}}{5}$
32.

$$
\begin{aligned}
& V=A t+B t^{2} \Rightarrow \frac{d x}{d t}=A t+B t^{2} \\
\Rightarrow \quad & \int_{0}^{x} d x=\int_{1}^{2}\left(A t+B t^{2}\right) d t \\
\Rightarrow \quad & x=\frac{A}{2}\left(2^{2}-1^{2}\right)+\frac{B}{3}\left(2^{3}-1^{3}\right)=\frac{3 A}{2}+\frac{7 B}{3}
\end{aligned}
$$

33.

According to problem
Distance travelled by body A in $5^{\text {th }}$ sec and distance travelled by body B in $3^{\text {rd }} \sec$ of its motion are equal.

$$
\begin{aligned}
& 0+\frac{a_{1}}{2}(2 \times 5-1)=0+\frac{a_{2}}{2}[2 \times 3-1] \\
& 9 a_{1}=5 a_{2} \Rightarrow \frac{a_{1}}{a_{2}}=\frac{5}{9}
\end{aligned}
$$

34.

$$
H_{\max }=\frac{u^{2}}{2 g} \Rightarrow H_{\max } \propto \frac{1}{g}
$$

On planet B value of g is $1 / 9$ times to that of A. So value of $H_{\max }$ will become 9 times, i.e., $2 \times 9=18$ metre
35.

Effective speed of the bullet

$$
\begin{aligned}
& =\text { speed of bullet }+ \text { speed of police jeep } \\
& =180 \mathrm{~m} / \mathrm{s}+45 \mathrm{~km} / \mathrm{h}=(180+12.5) \mathrm{m} / \mathrm{s} \\
& =192.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Speed of thief 's jeep $=153 \mathrm{~km} / \mathrm{h}=42.5 \mathrm{~m} / \mathrm{s}$
Velocity of bullet w.r.t thief 's car

$$
=192.5-42.5=150 \mathrm{~m} / \mathrm{s}
$$

AVIRAL CLASSES

CREATING SCHOLARS

Let two boys meet at point C after time ' t ' from the starting. Then $A C=v t, B C=v_{1} t$

$$
(A C)^{2}=(A B)^{2}+(B C)^{2} \Rightarrow v^{2} t^{2}=a^{2}+v_{1}^{2} t^{2}
$$

By solving we get

$$
\sqrt{\frac{a^{2}}{v^{2}-v_{1}^{2}}}
$$

37.

We are given

$$
\begin{aligned}
& \qquad \begin{aligned}
& x=a e^{-\alpha t}+b e^{\beta t} \\
& \text { Velocity } \quad v=\frac{d x}{d t}=\frac{d}{d t}\left(a e^{-\alpha t}+b e^{\beta t}\right) \\
&=a \cdot e^{-\alpha t}(-\alpha)+b e^{\beta t} \cdot \beta \\
&=-a \alpha e^{-\alpha t}+b \beta e^{\beta t} \\
& \text { Acceleration }=-a \alpha e^{-\alpha t}(-\alpha)+b \beta e^{\beta t} \cdot \beta \\
&=a \alpha^{2} e^{-\alpha t}+b \beta^{2} e^{\beta t}
\end{aligned}
\end{aligned}
$$

Acceleration is positive so velocity goes on increasing with time.
38.

Distance travelled by the particle is $x=40+12 t-t^{3}$
We know that velocity is rate of change of distance
i.e., $\quad v=\frac{d x}{d t}$.
$\therefore \quad v=\frac{d}{d t}\left(40+12 t-t^{3}\right)=0+12-3 t^{2}$
but final velocity $v=0$

$$
12=3 t^{2}=0 \text { or } t^{2}=\frac{12}{3}=4
$$

or $\quad t=2 s$
Hence, distance travelled by the particle before coming to rest is given by

$$
x=40+12(2)-(2)^{3}=56 \mathrm{~m}
$$

39.

We define

$$
\text { Average speed }=\frac{\text { Distance travelled }}{\text { Time taken }}=\frac{d}{T}
$$

Let t_{1} and t_{2} be times taken by the car to go from X to Y and then from Y to X respectively.
Then, $t_{1}+t_{2}=\left[\frac{X Y}{v_{u}}\right]+\left[\frac{X Y}{v_{d}}\right]=X Y\left(\frac{v_{u}+v_{d}}{v_{u} v_{d}}\right)$
Total distance travelled $d=X Y+X Y=2 X Y$
Therefore, average speed of the car for this round trip is

$$
v_{a v}=\frac{2 X Y}{X Y\left(\frac{v_{u}+v_{d}}{v_{u} v_{d}}\right)} \quad \text { or } \quad v_{a v}=\frac{2 v_{u} v_{d}}{v_{u}+v_{d}}
$$

40.

Distance travelled by the particle in nth second,

$$
S_{n \mathrm{th}}=u+\frac{1}{2} a(2 n-1)
$$

Where u is initial speed and a is acceleration of the particle.
Here, $n=3, u=0, a=\frac{4}{3} \mathrm{~m} / \mathrm{s}^{2}$
$\therefore \quad S_{3 \mathrm{rd}}=0+\frac{1}{2} \times \frac{4}{3} \times(2 \times 3-1)=\frac{10}{3} \mathrm{~m}$
41.

Let u and v be the first and final velocities of particle and a and s be the constant acceleration and distance covered by it.
Using $v^{2}=u^{2}+2 a s$

$$
\begin{aligned}
& \Rightarrow \quad(20)^{2}=(10)^{2}+2 a \times 135 \\
& \text { or } \quad a=\frac{300}{2 \times 135}=\frac{10}{9} \mathrm{~ms}^{-2}
\end{aligned}
$$

Now using, $v=u+a t$

$$
t=\frac{v-u}{a}=\frac{20-10}{(10 / 9)}=\frac{10 \times 9}{10}=9 \mathrm{~s}
$$

42.

The relative velocity of scooter w.r.t. bus,

$$
\begin{equation*}
\overrightarrow{v_{S, B}}=\overrightarrow{v_{S}}-\overrightarrow{v_{B}}=\overrightarrow{v_{S}}-10 \tag{i}
\end{equation*}
$$

Relative velocity $=\frac{\text { Relative displacement }}{\text { time }}$

$$
v_{S}-10=\frac{1000}{100}=10 \Rightarrow v_{S}=20 \mathrm{~m} / \mathrm{s}
$$

AVIRAL CLASSES

CREATING SCHOLARS
43.

All other motions are not along the straight line except (d).
44.
$s=2 t^{2}+2 t+4, a=\frac{d^{2} s}{d t^{2}}=4 \mathrm{~m} / \mathrm{s}^{2}$
45.

$$
t=\sqrt{\frac{2 h}{g}} \Rightarrow \frac{t_{1}}{t_{2}}=\sqrt{\frac{h_{1}}{h_{2}}}=\sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}}
$$

[CHEMISTRY]

46.
47.
48. Electronic configuration reveals atomic number 16, i.e., the element is S . The next element in its group is Se.
49. For isoelectronic atom and ions, higher the atomic number, smaller is the size. $\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}^{+}$and Mg^{2+} all have 10 electrons.
50. All have $18 \mathrm{e}^{-}$in each case
51. These are isoelectronic species. The radii decreases with the increase in effective nuclear charge
52. $\quad \mathrm{N}^{3-}, \mathrm{O}_{2}{ }^{2-}$ and F^{-}are isoelectronic with 10 electrons each. More the number of protons, smaller is the size.
53. These species are isoelectronic with 18 electrons each. Ca^{2+} has highest atomic number (20) and so lowest size. S^{2-} has lowest atomic number (16) and so the largest size.
54. $\quad \mathrm{K}>\mathrm{K}^{+}$and $\mathrm{F}>\mathrm{F}^{-}$.
55. $\quad F$ is smallest in size with 7 electrons in valence shell. It has highest 1 st IE. B has one electron in p-subshell $1 s^{1} 2 s^{2} 2 p$ and so lowest IE. P-atom has extra stable p^{3} configuration and has higher 1 st IE than S-atom.
56. Ionisation energy of $B E\left(Z=4\right.$, electronic configuration $\left.1 s^{2} 2 s^{2}\right)$ is greater than that of $B\left(Z=5, E C 1 s^{2} 2 s^{2} 2 p^{1}\right)$. IE of $N\left(Z=7, E C 1 s^{2} 2 s^{2} 2 p^{1} 2 p^{1} 2 p^{1}{ }_{z}\right)$ is greater than that of $O\left(Z=8, E C 1 s^{2} 2 s^{2} 2 p_{x}{ }^{2} 2 p_{y}{ }^{1} 2 p_{z}{ }^{1}\right)$
57. $\quad \mathrm{B}^{+} 2 \mathrm{~s}^{2}$ has pair in V.S while O^{+}has $\mathrm{p}^{1} \mathrm{p}_{\mathrm{y}}{ }^{1} \mathrm{p}_{\mathrm{z}}{ }^{1}$ symmetry
58. A sudden jump from first to second IE shows the valency of the atom ' A ' to be 1 . So, the formula of chloride
59. For a small difference of electronegativities of two bonded length is the sum of their covalent radii

Bond length of $\mathrm{C}-\mathrm{Cl}$ bond $=$ Covalent radius of $\mathrm{C}+$ Covalent radius of Cl
$=77.1+99=176.1 \mathrm{pm}$
60. For isoelectronics, increases in atomic number decreases the size.
61. $\quad[\mathrm{Ne}] 3 s^{2} 3 p^{3}$ has extra stable electronic configuration $p_{x}{ }^{1} p_{y}{ }^{1} p_{z}{ }^{1}$.
62. IE decreases down a group and increases along a period. Ar, being inert gas has highest IE.
63. General electronic configuration of elements of d-block is $(n-1) d^{1-10} \mathrm{~ns}^{1-2}$.
64.
65. $\quad \frac{d_{L a}}{d_{Y}}=\frac{6.16}{4.34}=1.42$
$\frac{d_{B a}}{d_{S r}}=\frac{3.51}{2.63}=1.33,0.09$ less than 1.42
$\frac{\mathrm{d}_{\mathrm{Cs}}}{\mathrm{d}_{\mathrm{Rb}}}=\frac{\mathrm{x}}{1.532}=1.24,0.09$ less than 1.33
$x=1.532 \times 1.24=1.9$
66.
80.
81.
82.
67. $\quad \mathrm{N}$ and P have half filled p -subshell. O -atom is smaller than S -atom.
83. $3 d^{3} 5 s^{2}$

Block-d

Period-5

Group-number electrons $+(\mathrm{n}-1)$ d electrons $=2+3=5$ or (VB)
84. Magic no ($2 \mathrm{n}^{2}$) : 2, 8, 8, 18, 18, 32, 50, 50, 72, 72

Period 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
$\therefore \quad$ element $2+8+18+18+32+32+50+50+72=290$
85. van der Waals Radii > Covalent radii
86. size of $\mathrm{Al} \simeq$ Ga due to poor shielding effect of d-orbitals
$\mathrm{Zr} \simeq \mathrm{Hf} \rightarrow$ Due to lanthanide concentration
$\mathrm{Fe}^{3+}<\mathrm{Fe}^{2+}<\mathrm{Fe}^{+} \rightarrow+$ veON \downarrow size \uparrow
87. The given species are isoelectronic. The size of these species decreases with increas in the positive charge.
88. All are isoelectronic species but as number of protons i.e. atomic number increases, the attraction between electron (to be removed) and nucleus increases and thus ionisation enthalpies increase.
Order of Z : $\mathrm{Te}^{2-}(52)<\mathrm{I}^{-}(53)<\mathrm{Cs}^{+}(55)<\mathrm{Ba}^{2+}(56)$. So same will be the order of IE
89. Orbitals bearing lower value of n will be more closer the nucleus and thus electron will experience greater attraction from nucleus and so its removal will be difficult, not easier.
90. Mn has $3 d^{5}, 4 s^{2}$ configuration. Removal of third election will be from half-filled 3d. Note energy shell also changes.

